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Abstract: In order to make a scientific evaluation of 

indoor air quality, according to GB/T18883-2002, five 

representative indoor environmental pollutants CO2, CO, 

TVOC, formaldehyde and particulate matter are selected 

to build a standard evaluation table, and a scientific 

evaluation model was established based on BP neural 

network and variable learning rate momentum method. 

Through MATLAB simulation, and compared with the 

three BP neural network models mentioned in the 

literature, the convergence speed of the momentum BP 

neural network model with variable learning rate is 

increased by about 51%, and the evaluation accuracy is 

up to 100%, which shows that the model can evaluate 

indoor air quality accurately and reliably. 
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I. Introduction 

With significant changes in contemporary lifestyle and 

working conditions, people spend 90% time indoors on 

average. Recent years see increased indoor pollutant 

contents due to indoor decoration or poor ventilation 

conditions, which will definitely cause persistent damage 

to the human body [1-2]. Study on indoor air quality has 

a long history. As early as 2002, the World Health 

Organization (WHO) proposed five major environmental 

factors that harm humanity, one of which is quality of 

indoor air environment [3]. In India, indoor air quality 

assessment has been made in and around urban slums 

based on carbon dioxide, carbon monoxide, sulfur 

dioxide, nitrogen dioxide and suspended particulate 

matter [4]. Another indoor air quality assessment in a 

Brazilian primary school was made based on xylene, 

nitrogen dioxide, sulfur dioxide, ozone, acetic acid, and 

formic acid isomers [5]. At the same time, some domestic 

scholars evaluate indoor air quality based on 

concentration values of indoor carbon dioxide, carbon 

monoxide, hydrogen sulfide, and air humidity [6]. 

Moreover, there are many books [7], reports [8] and 

standards [9] about indoor air quality, such as China's 

GB/T18883-2002 "Indoor Air Quality Standards". 

Indoor air quality evaluation methods are roughly 

divided into subjective and objective ones. Where, 

subjective evaluation method is to judge the quality of 

indoor air environment via subjective feelings of the 

human body, but this method is greatly susceptible to 

subjective consciousness. Moreover, some colorless and 

odorless harmful gases in the air are beyond perception of 

subjective consciousness. Hence, this method has great 

limitations. Objective evaluation method mainly takes 

pollutants with relatively great impact on the human body 

as evaluation factors. So far, such methods include fuzzy 

comprehensive evaluation method [10], analytic 

hierarchy process [11], and gray correlation method [12]. 

The method can fairly reflect indoor air quality, but lacks 

subjective feelings. As a result, both evaluation methods 

have respective advantages and unavoidable 

disadvantages. As technology progresses continuously, 

many complex problems are handed over to neural 

network. Based on BP neural network, this paper 

proposes to optimize the network by adding momentum 

and adaptively adjusting the network learning rate, so that 

more accurate and reliable comprehensive evaluation 

result is possible. 

II. Determination of Indoor Air Quality Parameters 

CO2 content in the air accounts for 0.03% ~ 0.04%, 

and its concentration can well reflect the effect of indoor 

ventilation, so it can be used as one pollutant for indoor 

air quality assessment. Indoor CO derived from 

combustion products of fuel gas has strong irritation and 

will affect human metabolism, growth and development, 

even causing death in the case of excessive content. 

TVOC is a gas causing the most serious impact on indoor 

air quality. Mainly from furniture and decoration 

materials, it will produce irritating odors when the 

content exceeds 0.3mg/m3, making the inhaler develop 

discomforts like headaches, loss of appetite, etc. Indoor 

formaldehyde mainly from wall coatings and paints will 

seriously damage people's respiratory system and 

immunity, thus playing a very important role in deciding 

indoor air quality. At the same time, inhalable particulate 

matter also greatly impacts indoor air quality. Mainly 

from indoor smoking, cooking fume and dust at cleaning, 

it can cause headaches, fatigue, etc. in the case of 

excessive concentration. Accordingly, five representative 

pollutants: CO2, CO, TVOC, formaldehyde and 

particulate matter are selected as evaluation factors for 

indoor air quality. 

III. Design of BP Neural Network Model 

A. BP Neural Network Structure 
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In this paper, indoor air quality is assessed based on 

three-layer BP neural network model. The network 

topology is shown in Fig. 1. The node number of network 

input layer, hidden layer, and output layer is set as n, p 

and q, respectively. Where, the network input layer has 

n=5 nodes, corresponding to 5 indoor air environmental 

pollutants; the output layer has q=1 node, corresponding 

to the output result of indoor air quality evaluation; wih, 

who are the weights from the i-th input node of the input 

layer to the h-th node of the hidden layer, and that from 

the h-th node of the hidden layer to the o-th node of the 

output layer, respectively. 
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Figure 1. Topological structure of three-layer BP neural 

network. 

B. Momentum BP Neural Network With Variable 

Learning Rate 

The traditional BP neural network modifies the 

weights of the network output layer and the hidden layer 

using the steepest descent algorithm based on the 

principle of error back propagation. The modification is 

as follows: 

 Calculate error function E of the network based 

on the system's training output yo and the expected output 

do: 
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Where: E is the network training error; o is the number 

of output layer nodes; k is the number of input samples; 

do(k) is the expected output of the k-th sample; yo(k) is 

the actual output of the k-th sample. 

According to the error function E, sequentially modify 
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Where: ∆who(k), ∆ wih(k) are the partial derivatives of 

the error function against the output and the hidden layer 

weight, respectively; yoo(k), hoo(k) are the output and 

hidden layer outputs, respectively; xi(k) is the network 

input; α is the learning rate, 0<α<1. 

The traditional BP neural network based on steepest 

descent algorithm has a slow convergence rate and shows 

"greedy search" so that it is prone to local extremum, 

making optimal result impossible [13]. To effectively 

avoid these shortcomings, this paper proposes momentum 

BP algorithm with variable learning rate for the network 

improvement. 

Momentum BP algorithm with variable learning rate is 

a combination of additional momentum method and 

adaptive learning rate method based on steepest descent 

algorithm. Its formula can be expressed as: 
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Where, η is a momentum factor, 0<η<1, generally at 

about 0.95; α is the learning rate, 0<α<1; k is training 

times,
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is the partial derivative of error function 

against the weight. 

As can be seen from (4) and (5), after momentum term 

is added to the BP neural network, the network correction 

concerns both the previous gradient and the previous 

correction result. At this time, the network weight will 

move toward low and flat error surface, which helps the 

network get rid of the local minimum of the error surface. 

However, the adaptive learning rate can improve the 

learning rate of BP neural network and speed up the 

network convergence. Where, the momentum factor η 

and the adaptive learning rate α are set as follows [14-15]. 

The modifier formula for momentum factor η is: 
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Where: η is a momentum factor, 0<η<1; k is training 

times; E(k) is error function. 

 The modifier formula for adaptive learning rate 

α is: 
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Where, α is the learning rate, 0<α<1; k is training times; 

E(k) is error function. 

The flow chart of the momentum BP neural network 

with variable learning rate is shown in Fig. 2. 
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Figure 2. Workflow of improved BP neural network algorithm 

IV. Set Up the Standard Evaluation 

This study is based on GB/T18883-2002 "Indoor Air 

Quality Standards" and other relevant national grading 

standards, etc. Considering the characteristics of IAQ 

influencing factors, the indoor air quality is assessed 

according to four levels by judging the five typical 

environmental pollutants CO2, CO, TVOC, formaldehyde, 

and particulate matter, namely no pollution (level I), light 

pollution (level II), moderate pollution (level III), and 

severe pollution (level IV), as shown in Table 1. 

Table 1. Classification Standard of Indoor Air Quality 

Level  
CO2 

/(ppm) 

CO 

/(mg·m-3) 

TVOC 

/(mg·m-3) 
Formaldehyde /(mg·m-3) 

Particulate matter 

/(ug·m-3) 

Ⅰ ≤550 ≤2.8 ≤0.2 ≤0.035 ≤45 

Ⅱ 775 3.85 0.3 0.057 98 

Ⅲ 1225 7.25 0.6 0.95 195 

Ⅳ 2125 14.5 0.8 1.7 360 

V. Simulation of Indoor Air Quality Evaluation Model 

A. Establishment of Training Samples and Models 

To fully train the BP neural network and achieve good 

adaptability in the trained evaluation model, the 4 levels 

in indoor air quality classification standard in Tab. 1 are 

expanded, followed by even data insertion between each 

two levels to obtain 500 sets of training samples required 

by the network. There is no unified reference standard for 

network input and output, which will greatly slow down 

the network convergence speed, so the concentration 

values of the five gases should be normalized to the 

unified reference standard as the model input, while the 

evaluation level should be normalized as the model 

output. Where, the normalization formula is [16]: 
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Where, y is the normalized value, x is the original 

value, xmax and xmin are the maximum and minimum 

values in the original data x. To enable good convergence 

in the neural network, the data is limited to the interval 

[0,1]. 

The network output also needs renormalization 

according to the renormalization formula to obtain the 

evaluation grade value: 

                           minminmax )(* xxxyx                  (9) 

Where, y is the transformed value, x is the original data, 

xmax, xmin are the maximum and minimum values in the 

original data, respectively. 

The number of hidden layer nodes p can be derived 

according to empirical formula [17]: 

                                 aqnp                           (10)
 

Where, n=5, q=1,a is a constant between [0，10], so p 

has a value range of 3~13. For the sake of ideal result, 

first set the minimum number of hidden layer nodes. By 

gradually increasing the number of hidden layer nodes, it 

is finally determined that the simulation effect is optimal 

when the number of hidden layer nodes is 6. Thus, 5-6-1 

three-layer BP neural network model structure is built. 

According to I, II, III, IV grade evaluation standards, the 

network output is set as follows: When the output range 

is (0.5, 1.5), the corresponding evaluation result is I, 

which is indicated by figure 1; at this time, at the critical 

value 1.5, "false alarms" is a better choice compared to 

"underreporting" according to the principle of "false 

alarms and underreporting". Therefore, when the output 

range is [1.5, 2.5), the corresponding evaluation result is 

II, which is indicated by figure 2. Similarly, when the 

output range is [2.5, 3.5), the corresponding evaluation 

result is III, which is indicated by figure 3; when the 

output range is [3.5, 4.5), the corresponding evaluation 

result is IV, which is indicated by figure 4. The maximum 

number of steps in the network is set to 1000; the training 

accuracy is set to 0.001; the initial momentum factor is 

set to 0.95. As the network adopts adaptive learning rate, 

the learning rate can be adjusted adaptively according to 
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the network error during training. Given that setting of 

the initial learning rate can ensure stable learning of the 

network under any value, the initial learning rate is set to 

0.01. The hidden layer excitation function takes S-type 

tansig; the output layer excitation function takes linear 

puelin. 

This paper simulates 10 sets of pollutant concentration 

data, as shown in Table 2. After the model training is 

completed, the pollutant concentration data simulated in 

Tab. 4 is conveyed to the network for verification.   

Table 2. Concentration Data of 10 Groups of Pollutants to Be 

Verified 

No. 
CO2 

/(ppm) 

CO 

/(mg·m-3) 

TVOC 

/(mg·m-3) 
Formaldehyde /(mg·m-3) 

Particulate matter 

 /(ug·m-3) 

1 683 1.95 0.17 0.027 41 

2 1457 3.58 0.71 0.971 201 

3 286 1.57 0.14 0.019 29 

5 397 1.74 0.08 0.024 27 

6 361 1.35 0.11 0.013 35 

7 1018 2.16 0.57 0.032 135 

8 519 2.62 0.09 0.029 78 

9 816 2.70 0.41 0.034 43 

10 417 0.87 0.14 0.007 28 

B. Data Fusion Simulation Test and Result Analysis 

In this paper, a network model is built using 

MATLAB2017a software platform, and a model is 

established for indoor air quality evaluation by 

momentum BP algorithm with variable learning rate. To 

prove evaluation performance reliability of the 

momentum BP model with variable learning rate, 

comparison is made between momentum BP neural 

network model with variable learning rate and the 

traditional BP neural network model, the additional 

momentum BP neural network model and the BP neural 

network model with adaptive learning rate. To reflect 

fairness of the network test results, the same sample data 

is used for the four models. For the traditional BP neural 

network model, when the learning rate is excessively set, 

the network will oscillate, resulting in failure to converge, 

so the learning rate is set to 0.32 based on verification. 

For the additional momentum BP neural network model, 

the learning rate is also set to 0.32, while the initial 

momentum factor is set to 0.95. For the BP neural 

network model with adaptive learning rate, its essence is 

to set the constant learning rate to a variable learning rate 

based on the traditional BP neural network. At this time, 

the initial learning rate can be arbitrarily set, so the initial 

learning rate is set to 0.01. 

In comparison of these four models, 500 sets of 

training data is first sent to the network model for training, 

and then the training steps of the four models are 

compared as shown in Table 3. 

Table 3. Comparison of Training Steps of Four Models 

Evaluation model Training step 

Traditional BP 68 

Additional momentum BP 62 

BP with Adaptive learning 

rate 
37 

Momentum BP with 

variable learning rate  
33 

After the model training is completed, the 10 sets of 

gas concentration data simulated in Tab. 2 are taken into 

the four models for testing, and the air quality evaluation 

results of the four models are shown in Fig. 3. 

 
Figure 3. Model Evaluation Results 

Based on the evaluation output of the four models 

shown in Fig. 3, comparison can be made in the actual 

output levels and errors between the four models as 

shown in Table 4. 

Table 4. Actual Output Level and Error Comparison of Four 

Models 
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2 3 3 0 3 0 3 0 3 0 

3 1 1 0 2 1 1 0 1 0 

4 4 3 -1 4 0 4 0 4 0 

5 1 1 0 1 0 1 0 1 0 

6 1 1 0 1 0 1 0 1 0 

7 2 2 0 2 0 2 0 2 0 

8 1 2 1 1 0 2 1 1 0 

9 3 3 0 3 0 3 0 3 0 

10 2 2 0 2 0 2 0 2 0 

As can be known from Tabs. 3 and 4, although the four 

models can converge after a limited number of iterations, 

the traditional BP neural network model needs 68 
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iterations to reach convergence, and its evaluation 

accuracy rate is only 80%; the additional momentum BP 

neural network model needs 63 iterations to reach 

convergence. Despite the iteration times similar to the 

traditional BP neural network model, it essentially adds 

momentum term to the traditional BP, which achieves 

better results by reducing the network oscillation, with 

evaluation accuracy rate up to 90%. BP neural network 

model with adaptive learning rate has the same evaluation 

accuracy rate as the traditional BP neural network model, 

but it reduces the network convergence time by about 

45.6%. In contrast to the above three neural network 

models, momentum BP neural network model with 

variable learning rate takes only 33 iterations to achieve 

100% evaluation accuracy rate, which not only speeds up 

the network convergence, but also improves network 

evaluation accuracy. Seen from the evaluation results, the 

model is superior to the other three BP models. Hence, 

momentum BP neural network model with variable 

learning rate can provide an accurate and reliable 

assessment of indoor air quality. 

VI. Conclusion 

In the indoor air quality assessment, by analyzing the 

five major environmental pollutant factors CO2, CO, 

TVOC, formaldehyde and particulate matter, this paper 

establishes an evaluation model based on BP neural 

network. The network weights are effectively adjusted 

via the momentum BP algorithm with variable learning 

rate. The simulation results indicate that the evaluation 

model can enable effective integration and output after 

training to achieve accurate and reliable indoor air quality 

assessment, so that people can understand their 

environmental conditions and make effective response, 

which demonstrates certain application value of the 

model. Compared with the traditional BP neural network 

model, additional momentum BP neural network model 

and BP neural network model with adaptive learning rate, 

momentum BP neural network model with variable 

learning rate has faster convergence speed, smaller error 

and higher classification accuracy. Therefore, the 

momentum BP algorithm model with variable learning 

rate proposed herein is effective for indoor air quality 

assessment. 
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